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Lubrication analysis of thermocapillary-induced nonwetting
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Recent interest in the phenomenon of thermocapillary-induced noncoalescence and nonwetting has
produced experimental evidence of the existence of a film of lubricating gas that prevents the two
surfaces in questiofliquid—liquid for noncoalescence; liquid—solid for nonwetlifigom coming

into contact with one another. Measurements further indicate that the pressure distribution in this
film creates a dimpled liquid free-surface. Lubrication theory is employed to investigate the coupled
effects of liquid and gas flows for a two-dimensional nonwetting case of a hot droplet pressed
toward a cold wall. The analysis focuses on the respective roles of viscous and inertial forces on
droplet deformation. Resultant droplet shapes show an influence of gas viscosity maintaining
nonwetting and of inertia contributing to a dimple. Previous analyses of thermocapillary-driven flow

in liquid layers and droplets model the gas as purely passive which cannot be the case in the present
application. ©2003 American Institute of PhysicgDOI: 10.1063/1.1608940

I. INTRODUCTION comprehensive review of both permanent and temporary
noncoalescence and nonwetting may be found in the recent
The sustainment of a state of permanent noncoalescengeview article of Neitzel and Dell’Aversana.
between two bodies of the same liquid or nonwetting of a  Theoretical treatment of thermocapillary noncoalescence
solid normally wetted by a particular liquid is a relatively and nowetting is complicated by the disparity of length
new area of investigation within fluid mechanics. Althoughscales involved. As mentioned in the previous paragraph,
examples of transient noncoalescer(eeg., bouncing and droplets of millimeter(or large) size generate gas films of
floating water droplejsdate back to the work of Rayleigi?  micron-sized thickness. Because the gas plays a central role
and Reynoldé,it is the permanent variety—in particular, that in the process, it may not be neglected, particularly if one is
driven by thermocapillarity—that concerns us here. Thisinterested in simulating accurately the free-surface shape. It
phenomenon occurs when the two surfaces attempting to kig the interaction between the liquid and gas through the
brought together are at sufficiently different temperaturesnormal-stress boundary condition that determines this shape.
Thermocapillary convection, driven by the temperature deMonti et al®° computed thermocapillary convection within a
pendence of surface tension, exists not only in the ligliid droplet whose shape was fixed by static considerations, using
experiencing a surface-temperature gradient, but also in thge surface speeds obtained to calculate flow in the surround-
surrounding gas through viscous action such that, under theg gas. The computed pressure distribution in the gas film
proper set of conditions, gas is driven into the space betweendicates a high pressure in the center that could give rise to
the surfaces, forming a lubrication film that keeps the liquid—a dimple, but the free-surface position was not recalculated
liquid or liquid—solid surfaces sufficiently apart that attrac-in light of this.
tive van der Waals forces remain weak. The present work adopts an alternate approach using lu-
The first systematic experiments investigating permadprication theory to simultaneously determine the coupled
nent, thermocapillary-induced noncoalescence were peftows in the liquid and gas for a two-dimensior{atD) non-
formed by Dell’Aversanaet al> Subsequent wofkverified  wetting situation of a hot liquid droplet pressed against a
directly, using interferometry, the existence of a lubricatingcold solid surface; 2-D noncoalescence and nonwetting have
gas film of order microns in thickness for droplets of orderbeen demonstrated experimentally by Nalevahtkep the
millimeters in size(noncoalescence has been observed foproblem is of practical interest. The flow in the gas film, with
droplets an order of magnitude larger than thisccurate its small thickness-to-lengttaspect ratio, is clearly a can-
measurements of film thickness for the case of nonwettinglidate for lubrication theory; its application to the flow in the
reveal a dimple, an area of reversed curvature, in the liquiiquid phase implies the assumption of a thin, nearly flat
surface having a symmetric shape about the center of thgroplet.
droplet. Additional discussion of various aspects of the phe-  There are several examples in the literature of the appli-
nomena may be found in the short article by Dell'’Aversanacation of lubrication theory to problems involving ther-
and Neitzef and in a pair of papers by Morgt al®?Amore  mocapillary convection. Sen and Datfiperformed such an
analysis for 2-D flow in a slot bounded by differentially
3Author to whom all correspondence should be addressed. Electronic maiP€ated endwalls; this work was later extended by Sen.
sumnerb@mercer.edu Ehrhard and Davié studied the influence of thermocapillary
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y A conditions, although the present formulation, focusing on the
» - lubricating flow in and above the droplet, leaves the ambient
T(l; .
///// /////// gas flow arbltrary fofx|>L. _
The formulation follows that of Sen and DatAsvith the
! major differences attributed to our consideration of a non-

H h(x) passive gas and a curved leading-order interface shape sub-
ject to a non-uniform temperature gradient. The governing
> equations,

7

////// TH/////il s Ux+vy:0: (13)
<

L pg(UU,+ VU ) = =P, pg(Ut Uyy), (1b)
FIG. 1. Problem domain and boundaries. Pg(UVi V)= =P+ ug(Vix+Vy,), (10
UB,+VO,=ay(0,,+0,)), (1d)

convection on the inhibition or promotion of spreading on
heated and cooled plates. Benintendi and Shitlsed the represent continuity, balance of momentum in thandy
Ehrhard and Davis formulation to examine the effects of slipdirections(neglecting gravity, and conservation of energy in
coefficient and mobility capillary number on non-isothermalthe gas; similarly

spreading. Smit}f likewise used lubrication theory to study

the migration of a thin droplet along a differentially heated Ut vy =0, (29

s_urf_ace. In all of these applications, the_ gas bou_nding the pi(UlxF+0Uy) = — Pyt p(UyxF Uyy), (2b)

liquid free-surface was regarded as passive since it plays no

central role in the flow under consideration. pi(Uvytovy)=—py+ u (vt vy, (20)
In the related problem of Marangoni convection due to

thermocapillarity experienced by liquid layers heated from  UTxToTy=ai(TxtTyy), (2d)

below, experiments by Van Hoait al.'’ on the initiation of  apply in the liquid. The dependent variables of these equa-
long-wave instabilities were unable to be explained with a;ons are thex and y components of velocitylJ, V, and
so-called “single-layer” model considering the liquid only. A pressureP in the gas andu, v, and p in the liquid, and
two-layer model developed by Goloviet al*® employed &  temperature® in the gas, and in the liquid. The properties
multiple-time-scale techniquévith convection in both lay-  of the fluids are the densitiep, andp, , viscositiesu, and
ers, while a two-layer lubrication model by Van Hook ,,  and thermal diffusivitiesy, anda,, whereg and| sub-
etal® considered only conduction in the gas layer. Thescripts distinguish the gas and liquid, respectively. The

present work represents the first that we know of to use lupoundary conditions modeling the effect of the walls, where
brication theory to treat analytically both the liquid and gas|x|<L, are

flows.

In the following section we present the mathematical U=v=0, T=Ty (y=0), ()]
formulation of the problem, discussing, in particular, the im- L B B
plications of various scaling choices. We then present results U=V=0, 0=Tc (y=H). )
for theO(1) andO(A) treatments, wherd<1 is the aspect Symmetry atx=0 implies
ratio in terms of which the solution is expanded. Finally,

results of computations for various choices of parameters are  U=vx=Tx=0 (y= h(x)), ®
resented and discussed.

P U=V,=0,=0 (y>h(x)), )

Il. MATHEMATICAL FORMULATION whereh(x) is the interface position. In index notation, inter-

Steady, two-dimensional, liquid and lubricating-gas flowfaCIaI boundary conditions

fields coupled by a deformable interface are considered. Both [Sijlinjni—[SijIgnjni=oK
phases are treated as incompressible, Newtonian fluids hav- [S;Iinti—[S;Ighiti= ot

ing constant material properties with the exception that the k1T ini= kg0 ;n; (y=h(x)) 7)
surface tension of the liquid is assumed to vary linearly with ’ [uin; ’=O '
temperature. As shown in Fig. 1, the liquid is bounded below [u-]l =[IU']|

ilg i

by a flat, solid surface at constant temperafliseand above

by the liquid/gas interface. The gas is bounded above by eepresent, respectively, the normal-stress, shear-stress, heat-
flat, solid surface maintained at constant temperailige transfer, and kinematic constraints coupling the gas and lig-
<Ty. Symmetry conditions are enforced on the liquid anduid flow fields, wherer is the surface tensiof denotes the

gas flows and the interface at the center of the droplet at interface curvature, and the thermal conductivities are indi-
=0. The contact line where the interface intersects the boteated byxy and«, . In these equationsy; andt; define unit

tom wall marks the end of the liquid droplet of length,2 vectors in the normal and tangential directions, respectively,
and the gas is assumed to be open to surrounding ambieat the interface and, in vector notation
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1 A A ReA3(uv,+vv,)=—p,+A%, +A%,., 13c¢
n:N(_hXi+j)1 (88) ( X y) py XX yy ( )
MaA(UT,+0T,)=A%T,+ Ty, (13d
1. .
t= N(i +hy), (8b) and for the gas
Uy+V,=0, (14a
where
p ReA(UU,+VU,)=—P,+ u(A%U,,+U,,), (14b
N=(1+h2)2 (80) , / . Zy
ReA°(UV,+VV,)=—P,+ u(A*V,+A%V,,), (14cC
The stress tensd;; is defined by P (UVt VW) v HA N wh (149
+ = a(A%0,,+
[Sy]g= — P&y +1g(Uy,+U, ) (9a) MaA(UO,+VO,)=a(A0,,+0,), (140
where
and
[Si11=—Paij+ (Ui +u; ), (9b) p:%, (153
where U; and u; represent the velocities chosen to corre-
spond to the liquid or gas flow, respectively, afigl is the _ Mg (15b)

Kronecker delta. The surface tension varies with temperature = ;"
according to

o

7= 0~ (T~ Trep), (103 a= ;? (150

where :
The Reynolds number Re and Marangoni number Ma ap-

Ter=3(Ty+To), (10b) pearing in the equations are given by
andy is a property of the liquid assumed to be constant; we pu*H
confine our attention to liquids for whicy>0. Re= W (163

Because the interface positidm(x), is also an unknown
variable, three additional constraints are necessary to com- Ma= u*H (16b
plete the mathematical formulation. Constant liquid volume T

must be maintained, requirin .
q g The boundary conditions become

L _
J h(x)dx=V, (113 u=v=0, T=3 (|x|<1y=0), 17
0
— . o U=Vv=0, 0=—-3 (|x|<s1y=1), (18
whereV equals the volume per unit length of liquid in the
droplet, and, to enforce symmetry, u=vy,=T,=0 (x=0y=<h(x)), (19
hy=0 (x=0). (11b U=V,=0,=0 (x=0y>h(x)), (20)

A final constraint imposes a condition where the interfaceand, on the interface,
contacts the bottom wall. Because our motivation for this )
analysis stems from experiments* for which the liquid (=P 2y~ ot AP (ht— 0]
droplet was affixed to a support with a sharp edge, we choose NC y

to pin the contact-line position by requiring
2

h=0 (x=L). (119 —Mzl\liz[vy—hxuy+A2hx(hxux—vx)]
Lengths are scaled dy andH in the x andy directions,
respectively, creating the presence of an aspect ratio, A3 Ca
=H/L, in the governing equations and interfacial boundary = N°Ca 1= T heo (213

conditions. The remaining variables are scaled with veloci-
tiesu* and Au*, for the x andy directions, respectively, a
pressureu,u*/HA, a surface tensiowr s, and a scale\T
for the temperature deviation froe whereAT=Ty—T¢
and the thermocapillary velocity scale is

1
AZh(vy—Uy) + E(1—A2h§)(uy+ A%v,)

- {Azh (Vy—Uy)+ 1(1—A2h2)(u + A%V )}
M x(Vy X X y X

vAAT
u* = o (12 N
- | | . — = S (Teth,Ty), (21
The resulting scaled governing equations for the liquid are 2
Ux+v,=0, (138 T~ A%h,T,=«(0,—A%h,0,), (210
ReA(UU+vUy) = — Pyt AZUyyt Uy, (13  v=h,u, (210
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where 2 1 2,2 2

A hx(_(/’xy_ wyx)"_ z(l_A hx)(l/’yy_A 'pxx)

N=(1+A%h3)Y2 =9
K|

2 1 212
—K|A hx(_q,xy_qux)_"i(l_A hx)(q,yy
The capillary number Ca arising in the normal stress bound-

ary condition is defined b N
y y —AZ\PXX)} =~ 5 (T+hT,). (270
*
Ca= mu ) (22) Restricting attention to a thin-film analysis, we seek an
O'ref asymptotic solution in terms oA as the small parameter.

) ) . Thus, the analysis is restricted to the situation where
To complete the dimensionless form of the problem, the fma%l_, implying a thin gap and a droplet that behaves as a thin

constraints orh become film. The expansions for the interface position, as well as the
gas and liquid stream-function, temperature, and pressure

flhdx= izv (233 fields represented by
° AL h=ho(X) +hy(x)A+O(A?), (283
he=0 (x=0), (23b ¥=o(x.y) + Y (x,y)A+ O(A?), (28b
= + A+O(A? 2
he0 (x=1). (230 P=Po(X.y)+ P1(x,Y)A+O(A?), (280
T=To(x,y)+ T1(X,y)A+O(A?), (280
Our analysis treats the dimensionless equations in _ 2
stream-function form, eliminating the explicit continuity ¥ — Y o(X.y)+¥1(x,y)A+O(A%), (289
statements and pressure variables. The momentum and en- p=p(x,y)+ P,(x,y)A+ O(A2), (28f)
ergy balances in the two phases become 5
0=0,(x,y) +01(x,y)A+O(A%), (289
ReAL (y Uy Uthyyy) + A2ty thyux— thexy)] are substituted into the problem defined by E@®)—(27).
_ 1 oA2 Y o4 The subsequent problems governing @¢1) and O(A)
Yyyyy Py ™ A e (243 components of these expansions are referred to as the
_ —A2T 4 leading- and first-order problems, respectively. The dimen-
MaA(y T Ty =ATact Ty, (240 sionless parameters in the analysis are assumed to be of or-
ders
P ReA[(\I,yq,xyy_\I,x\Ifyyy) +A2(\I,yq,xxx_ ‘Px\l,xxy)]
) 4 Ca=0(A?), (299
= u(Wyyyyt 2AW 0+ AT ) (240
Ma=0(A), (29b)
MaA(W,0,—~V,0,)=a(A%0,,+0,,), (240 Re=0O(1) (296

where ¢ and ¥ designate the stream function in the liquid with
and gas, respectively. The kinematic constraints are then im-

-~ p, v, and k=0(1). (30)
posed by requiring . S
The choice Ca O(A®) is critical to the development of
y=¢,=0 aty=0, (259  an asymptotic solution since other choices lead to math-
ematical obstacles. For €aD(A?) and larger, the leading
Vv=¥,=0 aty=1, (25p ~ order pressure fields are constant resulting in a static leading-
order flow field, while Ca O(A%) or smaller, meaning Ca
y=¥=0, andy,=V, aty=h(x), (26) =0(A%), results in a flat interface to leading order. In the

latter case, an interface with zero curvature is subsequently
and the normal- and shear-stress boundary conditions bé&und within the then necessary boundary layer near the con-
come tact line which prohibits matching to the outer flow. The

choice in our case of GaO(A®) results in a two-

2 dimensional leading-order flow field with a curved interface.

—(P—P)+ — [~ thy— hxthyy + ANy (hethy,t )] With interface curvature, the contact-line condition is satis-
N fied without the presence of a boundary layer. The two-

2A2 dimensional flow field permits recirculation in the absence of

— i V[—\Irxy— hyW,+ Azhx(hxqrnyr Y boundary layers. In the thermocapillary slot flow problem of

Sen and Davi¢ with an O(A*) capillary number, the

leading-order solutions contain a flat interface and one-
R (273 dimensional core flow requiring boundary layers at the end-

walls to allow recirculation. Our lack of a one-dimensional

A3
" N3Ca

1~
A
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Transition The choice for the Marangoni number to R£A) re-
moves the influence of convection so that the thermal field is

A e
yw o~ AN S A nearly pure conduction up to first order and thus independent

I I of the value of Ma andx. Avoiding the complications of
| (/\Q | Ambient convection until second order allows a simple and direct
(/\ Gas means to investigate the role of inertia. Thus, the present
effort represents only a first step into a complete investiga-
> tion of the possible consequences of inertia.
///////// * x The Reynolds number, representing the relative impor-

tance of inertial and viscous forces, is crucial to our investi-
FIG. 2. Gas flow transition layer. gation into droplet deformation. A Reynolds numbefQifl)

or smaller inA ensures that viscosity dominates the leading-
core flow can be explained by recognizing some physicaprder flow as lubrication theory dictates, so that the leading-
characteristics of the problem considered herein. In the proterder flow does not depend on Re arin the case of Re
lem of Sen and Davis, a uniform interfacial-temperature gra=0(1), the influence of inertia is observed immediately in
dient spans the length of the leading-order interface whiclthe first-order correction. Choosing R®(A) or smaller
permits a fully developed interior flow. In the present drop-simply delays the inclusion of inertia to smaller orders.
let, the interfacial-temperature gradient decays to zero at the Although not appearing in the problem definition, the
center of the droplet as required by E@.9). Thus, the orders of Ma and Re implicitly dictate the Prandtl number Pr
leading-order bulk fluid motion must also decay, never alto be O(A), since P=Ma/Re.
lowing a fully developed flow. A reexamination of the ther-
mocapillary slot flow problem with CaO(A®%) by Sert®  A. The leading-order problem
found an entirely two-dimensional leading-order flow al-

though boundary layers remained necessary. corresponding to each order expansi¢28a—(28g can be

Consistent with lubrication theory, the nature of the yetermined. The leading-order problem consists of the gov-
asymptotic, thin-film analysis neglects terms in the 'ead'ng'erning equations

and first-order governing equations that involve derivatives
in the direction along the gap length. The resulting flow and  #%oyyyy=0, (313
temperature conditions in the solutionsxat 0,1 dependent

ConsideringA as an independent parameter, a problem

implicitly upon the end constraints dr(x). It can be shown Toyy=0, (31D

that imposing symmetry on the interfacexat 0 with Eq. n -0 (323
: : : oyyyy— “

(23b) also enforces the kinematic requirement of symmetry

on the velocity and thermal fields in both fluid phases. With- ~ @y, =0, (32b)

out a kinema_tically pr_e_scribed bqundary for the gasxat subject to boundary conditions
=1, the resulting conditions found in the gas there cannot be
substantiated. The pinned-contact-line condition of 280 oy=1o=0, and To=3 (y=0), (33
causes a segregating vertical streamline through the contact .
line wherey=0 as shown in Fig. 2, implying complete re- Woy=Wo=0, and®o=—3 (y=1), (34
circulation above the droplet and forbidding ambient gas enand on the interface whege=h,,

trainment. The solution is not found to be symmetric about

this segregating streamline in that neitlgrnor ®, equals 0=%o=0, ¢oy=Voy, (353
zero. Segregating the flow abruptly &1 lacks physical

rationale even at leading order while neglecting inertia. The Yoy~ K¥ oyy=Tox T NoxToy. (355
shear stress induced on the interface drives flow in the tran- Noxx

sition region near the contact line lowering the local gas ~ Po=Po=—~". (350
pressure precisely where the ambient gas remains accessible.

Incorporating a transition layer matching the lubricating flow ~ To,=«®,,, (350
above the droplet to the ambient gas conditions would allow

the implementation of the appropriate physics governing en- To=0o, (358

the transition region with thickness @f(A) or smaller, but = c a3, To complete the problem definition,

cannot impact the innermost lubrication flow near the
dimple. Since, in the present work we focus on investigating flh dx=V.

) 0dXx=V, (363
the presence of the dimple at the center of the droplet, re- 0
solving the gas transition layer at=1 for a particular am-
bient flow is not necessary. The recirculation of the gas flow  hox=0 (x=0), (36b)
near the contact line in the solutions that follow is physically he=0 (x=1) (360
unrealistic and could be corrected when warranted by resolv-  ° '
ing the transition layer. constrain the unknown interface positibg(x).
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Direct integration of Eqs(31) and (32) and application of Y1y=¢1=0, andT;=0 (y=0), (42)
the boundary conditiong33), (34), (35a), (35b), (35d), and
(350 leads to ¥y =¥;=0, and®,;=0 (y=1), (43
— k(hg—1)hoy required to satisfy no slip, no penetration, and isothermal
ozw(ys—hoyz), (378 plates. The first-order version of the interfacial boundary
0™0''0 conditions is given by
_KhOhOX — h -1 h h
Wo= 0 [y 1~ (g +2)(y?~ 1) _ vy, = Mo~ Dhhoy
4MoK§(ho—1) Yr="1 AM K2 hy, (443
+(2ho+1)(y—1)], (370 H
Ko
k1 it g, =Wy, (44b)
To=—y+=, (370 MoKp
Ko 2
-1 1 (/flyy_ M‘Iflyy:_Tlx_hOXle_TOyhlx_GOhla (440
Oo=1—(y-1~3, (379
KO h1xx
Pi=p1=—(=", (440
whereMy=hg(u—1)+1 andKy=hg(x—1)+1, providing C
an analytical solution for the flow and temperature fields in T =x® (449
terms of a yet unknown leading-order interface position 1y~ KBy
ho(x). The leading-order momentum-balance equationgind
(13b), (130, (14b), and (140 then show that (c—1)h
K— 1
Poy=Poy=0, (383 T,=0,+ K, (44f)
—3(hg—1)xh
pOX:(O—Z)KOX (38b) where
2M oK 2h,
G _T0x+ 3K<ho_1 mho ) (hg—1)hox
—3uxhgh %" hy " 2| hy hp—1 2
Poy M KNNox (389 0 0 0 hoMK3§

T OMAKAh— 1)
2MoKg(ho—1) apply aty=hg. Finally, the correction of the interface posi-

Differentiating Eq.(35¢) with respect to thex direction and  tion is constrained by

substituting for the pressure fields yields 1

ho(ho—1)M oK 3houxt 2Ck(hoMo+ho—1)hg=0, JO h;dx=0, hy=0 (x=0), andh;=0 (x=1).
(39 (45)
which governs the leading order interface position subject

to the auxiliary conditions of Eqs36a—(360. The non- ology applied to the leading order problem. The governing

linear system_compos_ed of Eq&39) and (363—(360) is equations(40b) and (41b) and auxiliary conditions(42),
solved numerically with a second-order-accurate centralz43) and (448, (441) provide

differencing scheme on a uniformly spaced grid. For conve-

We solve the first-order problem with the same method-

nience, a second-order-accurate backward-difference ap- k(k—1)h,
proximation is employed at a single node neighboring Ti=——p5— (46)
=1. An iterative computation procedure imposes either a Ko
circular-arc interface shape as assumed by \Wboda pre- and
viously computed solution in nearby parameter space for an
initial guess ofhg. (k—1)h;
®1=T(y—1) (47)
0

B. The first-order problem

The first-order problem in the case with Re(1) is de-  for the correction to the temperature field in terms of the

fined by the governing equations unknown interface correctioh;. Equations(40a and (413
imply solutions of the form

Re(l ‘ﬂOy'ﬂOxy_ ¢Ox¢0yy)y: lﬂlyyyyi (409

ley=0, (40b) ¢1:Ref f f (¢Oy¢0xy_ ‘/"Ox‘r//Oyy)dys

P Rd\POy\POxy_\POx‘POyy)yz/qulyyyyv (41a 1 . 1 )

+ < Ci(X)y°+ = Cr(X)y“+ C3(X)y+Cy(x), (48

®lyy:O: (41b) 6 l( )y 2 2( )y 3( )y 4( ) ( )

with boundary conditions and

Downloaded 05 Sep 2003 to 130.207.165.29. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



Phys. Fluids, Vol. 15, No. 10, October 2003 Lubrication analysis of thermocapillary-induced nonwetting 2929

p
q’lzﬁReffJ(TOyWOxy_\POx\POyy)dyS

1 1
5 B1)Y*+ 5 B2(X)y* + Bs(x)y +By(x),  (49)

04r

where C;(x) and B;(x) represent arbitrary functions due to
the integration over the variable. These eight functions
have analytical expressions in termshgfandh, dictated by
the auxiliary conditiong42), (43), (44a—(440. The first-
order normal-stress boundary conditigddd) then governs
the interface correctioh, and takes the form

IXXX

h
HB1(0 ~C1(x) ==&, (50

whereB;(x) andC4(x) are found to be linear operators on |
h,; andhy,. The resulting nonhomogeneous linear equation ,
is solved with the finite-difference techniques employed for ,,
the leading-order problem.
Considering ReeO(A) instead would remove the consid- o2
eration of inertia from the first-order problem resulting in a
linear, but homogeneous equation. The first-order correction 65— oo o o o5
with a relaxed volume constraint could then be specified to x
within the multiplication of an arbitrary constant implying a FIG. 3. Leading-order streamlines and isotherms for ¢ase
unique interface shape independent of volume. The net vol-
ume of the correction must also be a multiple of this con-
stant. Because maintaining a fixed liquid volume, indepengations into the influence of defined parameters on droplet
dent of A, necessitates a net zero volume constraint for eackhape. The following parameter values define d¢age
interface correction, a trivial solution of zero for the interface V=07, C=1, wu=0.1, «k=0.1,
correction cannot be avoided. The governing equation of the
second-order problem would be nonhomogeneous due to the p=0.001, Re=5000.
now present inertia terms permitting a nonz€¥(A?) cor-
rection.
These leading- and first-order problems for=Rg(A)
also apply for the case of ReD(A?) and smaller. The of the droplet-shape correction.
second-order correction for the case with-Re(A%), which The viscously dominated leading-order solution for case
remains viscously dominated, is not necessarily zero as is th@) is given in Fig. 3, which shows both streamlines and
viscously ('jommatedl first-order cgrregtlon, qnd may lead tqsptherms. The dotted curve represents the droplet interface;
the formation of a dimple. Complications arise withand  onhioyr values are equally spaced. These solutions are rel-
y-direction derivatives now significant in the momentum bal-o\ 4nt in the limit asA approaches zero which corresponds
ance. The flow-field correction might then be solved nume”'physically to the limit as. approaches infinity implying a
cally as was done by Sen and D_a%/’rs. o long, flat droplet. The streamlines show a single-cell flow
~ Togain insight regarding the importance of inertia in the g \ctre in the liquid below the interface and another in the
dimple formation, we present solutions to the simpler prob-,q apove. The leading-order flow satisfies the kinematic
boundary condition on the interfad&q. (26)] identically.

The two parameterp and Re impact the role of inertia and
thus only influence the correction. The relatively large value
for Re serves only to provide a distinguishable presentation

lem of Re=0O(1) to incorporate inertia in the first correction.

We are able to show then how the presence of inertia influthe complete recirculation of the gas above the droplet is a

ences the formation of a dimple but cannot preclude the possonsequence of our choice not to resolve the transition layer
sibility of a dimple shape due to aD(A?) viscous effect. peary—1 The isotherms show the pure-conduction state

Furthermore, the choices of R&(1) and Ma=O(A) re- i 5 discontinuous slope in the contours at the interface
strict the Prandtl number 10 (A) for the solutions presented e to the change in thermal conductivity sineé1. Sym-

herein. metry in the temperature field can be observex=a0, while
the nonzero heat addition at=1 is not meaningful in the
. RESULTS absence_of a transition-layer correc_tion. _
The interface-temperature gradient that drives the flow
The results to be presented begin with three cadg¢saa  decays to zero as approaches zero as dictated by ELp).
solution for a single set of paramete(8) a case identical to With a negligible driving mechanism near0 and no iner-
(1) but with a larger liquid volume fraction; an@®) a case tia, the flow simply dissipates in the interior where the
identical to (1) with a smaller value for the thermal- dimple is expected to form. To search for a possible dimpled
conductivity ratio. These are followed by a series of investi-shape at leading order, we examine cé3eincreasingV to
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FIG. 5. Leading-order streamlines and isotherms for ¢@se
FIG. 4. Leading-order streamlines and isotherms for ¢ase

points in the droplet shape and zero values in the pressure
simulate an attempt to force the droplet to wet the Wa"_dlfference. The first-order correcnon of the pressure differ-
ence P,—p; reveals a local maximum located near

Figure 4 shows the leading-order solution wihset to 0.8. =0.25, observed to correspond with a local maximum in the
Recall that the present analysis does not permit wetting and """ P .
interface curvature, and a second, smaller local maximum

thus this solution may not correspond to a realizable Scelbcated neax=05. This second local maximum shows the
nario. Still, under these conditions of extreme droplet defor-. . e o
first evidence of interface curvature nee+0.5 which is

mation, we find that, rather than prompting a dimple, the hown to be more discernible in later di din th
impact on the interior flow lessens. In a second attempt t oll(z)win; € more disce € In later cases discusse €

find a leading-order dimple, for cag8), we decrease the
value of k with the intent to redistribute the driving interfa-
cial temperature gradient more toward the center of the drop- ;
let. The resulting solution shown in Fig. 5 lacks an interior L oIl
region of purely dissipative flow, and, although the droplet
shape is significantly altered, the interface curvature charac-  ost !
teristic of a dimple remains absent. Comparing the results in - :Z:gj:,
Figs. 3—-5, we notice that the location of the center of the —
flow cell follows that of the driving mechanism, i.e., the 0
region with a relatively larger interfacial temperature gradi-
ent. Finally, a complete parameter search reveals no evidenct
of the possibility for anO(1) dimpled shape. The parameter o1 02 03 0f 05 65 07 o8 05 1
influences on droplet shape are discussed in the following.
The first-order corrections for cagb are shown in Figs.
6 and 7. The droplet-shape correctidn, is shown in Fig. st
6(a) along with the leading-order shape and the resulting AN
corrected shape for two values &f A dimpled shape ap- T iiimE o

=

pears as a result of the correction. The leading- and first- i

order versions of the normal-stress boundary conditi€ufs. S S

(350 and (44d)] specify the consequential pressure differ- e l;f,-p,', -

ence across the interface shown in Figh)6 The pressure _ ngZ,'on;;;pj:ﬁj;
field in each phase has only axdirection dependence to or

these orders iA where the interface curvature dictates the 0 o1 6z 05 o4

pressure difference. Comparing Figga)6and @b) reveals ®)

the necessary pos_itive pressure difference where th_e dimplﬁG. 6. Interface correction for cagd): (a) droplet-shape(b) resulting
forms and appropriate correspondence between the inflectiamerfacial pressure difference.
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FIG. 7. Stream-function and isotherm corrections for e . .
o3 FIG. 8. Streamlines and isotherms correcte®(@) for case(1).

Figure 7 presents the streamlines and isotherms of the
correction. In these graphs, the leading-order interface posthe presence of the upper wall as shown in Fig).9The gap
tion distinguishes the gas and liquid phases although the inwidth between the droplet and the wall increases but with no
terface correction is nonzero. This presentation is chosen duevidence of the curvature necessary for a dimple. The dimple
to the nature of the asymptotics employed, which requiresnfluence of the interface correction increases as shown in
the solution corrections to be independeniddfas shown in  Fig. 9b). For sufficiently high values o€, a critical point of
Egs. (289—(289g)]. The streamline correction consists of a zero slope is found to develop away from 0. This influ-
two-cell flow structure in the liquid and again in the gas.ence can be seen in the corrected droplet shapes of (€lg. 9
Notice that the amplitude of the stream-function correction isThe increase in interface curvature near this critical point is
an order of magnitude larger than the leading-order strearassociated with an increase in the local pressure difference
function while the droplet-shape correction remains compaacross the interface which for the case@f1 appears as
rable to the leading-order droplet shape. This can be exthe local maximum neak=0.5 in Fig. 8b) although the
pected since Ca i®(A%) while Re isO(1). Theisotherms consequential interface curvature is not visually distinguish-
deviate from pure conduction due to the implicit influence ofable as in the cases witG=5 or 10. Given the thin-film
the leading-order flow field on the temperature correction. restriction of this analysis, the influence of inertia via the

The resulting flow and temperature fields corrected tacorrection decays far into the interior.
O(A) are shown in Fig. 8, for the choiok=0.2. The fluid The influence of liquid volumé&/ is similar to that ofC
phases remain distinguished with the leading-order shapas can be seen in Fig. 10, the primary difference being that
marked by a dotted line. The dashed line indicates the colincreasingV decreases the gap width contrary to the behav-
rected droplet shape fok=0.2. The streamlines, showing ior with varying C. IncreasingV emphasizes droplet defor-
the dual-cell structure of the correction in each phase, arenation due to the wall in a similar fashion as increastg
dominated by the correction as was found necessary tthe region of zero curvature about the center of the leading-
present a distinguishable adjustment of the leading-ordeorder droplet shape expands. Furthermore, the interface cor-
shape for reasons discussed above. The leading-order temections given in Fig. 1®) show, although on a different
perature field remains evident in the corrected flow. The Mascale, shapes similar to those found when investigating the
rangoni number oD(A) delays the appearance of the con-influence ofC even in the formation of a critical point away
vection terms in the energy balance ui@{A?) so that the from x=0 for the larger volumes considered. Through the
next correction to the thermal field would be expected toimplicit dependence of the correction on the leading-order
dominate as is the case of the first-order stream function. flow, C andV remain independent parameters in the first-

Figure 9 considers the influence 6f(recall Ca= CA®) order problem despite their similar influences. The corrected
with remaining parameters as specified for cdgelncreas- droplet shapes computed for increasing volumes show little
ing C simulates a reduction in surface tension and conseimpact on droplet height in the interior due to the canceling
guently an increased surface flexibility. Varyiyfrom 0.2  influences of the leading-order shape and the correction
to 10 increases the leading-order droplet deformation due tahile, away from the interior, the growth of a bulge is ob-
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FIG. 9. Influence ofC on droplet shape with remaining parameters values

corresponding to cas@): (a) leading-order solution(b) first-order correc-  FIG. 10. Influence oW on droplet shape with remaining parameters values

tion, (c) solution corrected t®(A). corresponding to casd): (a) leading-order solution(b) first-order correc-
tion, (c) solution corrected t®(A).

served. The consequence of the bulge shape is again to forffitien in our case as a single solution scaled by Re such that
a dimple. if ¢ corresponds to Rel, theny=Rey provides a solution
The influence of VaryingL and thus the Viscosity of the for any fixed value of Re. In the limit as Re approaches Zero,
gas relative to that of the liquid is presented in Fig. 11 andhe correction approaches zero and at the same rate, the first-
reveals the role of viscosity in the lubricating layer. Figureorder problem definition approaches that corresponding to
11(a) shows that increasing increases the leading-order gap the Re=O(A) case. We can again conclude that @A)
width. The equations become stiff for values @fbelow  solution does not exist without the consideration of inertia.
0.01. The corrections in Fig. 1d) show the dimple shapes
for small values ofu with an amplitude that decays to zero IV. CONCLUSIONS
asu increases. The role of gas viscosity contributes to main- A lubrication analysis has been performed for a
taining droplet separation from the opposing wall but re-thermocapillary-driven nonwetting droplet focusing on the
duces the impact of inertia in the correction. respective influences of viscosity and inertia. The present
The density ratiop, influences the correction as shown analysis neglects the effects of gravity and considers a two-
in Fig. 12. Decreasing and thus the density of the gas dimensional, symmetric liquid droplet coupled at the surface
relative to that of the liquid reduces the dimpling influence ofwith a non-passive gas. Although the lubricating fluid is re-
the correction. However, in the limit gs approaches zero, ferred to as a gas, the results found are equally applicable to
the correction approaches a nonzero amplitude correspondnmiscible-liquid pairs.

ing approximately to the case with=0.01. The inertia in Dimensionless parameters are specified as fixed orders
both the liquid and gas influence the size of a dimple, and @f the aspect ratio. Due to the curved droplet shape and non-
dimple exists in the absence of inertia in the gas. uniform interfacial temperature gradient, a capillary number

With the Reynolds number chosen to®¢1), thevalue  of O(A®) was found necessary to facilitate analytical results.
of Re appears as a scale of the nonhomogeneous term in tii&e order of the Marangoni number remained fixe@&A)
linear differential equationgEqgs.(408 and(41a] governing  to delay the influence of convection on the thermal field and
the flow-field correction. The solution can consequently beallow the analysis to focus on the roles of viscosity and in-
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liquid volume fraction, the viscosity ratio, the density ratio
and the Reynolds number.

Additionally, viscosity has n®(A) impact in that this
correction without inertia is shown to be zero. TB¢A?)
influence of viscosity alone warrants consideration although
it is not investigated herein. Thus, we cannot conclude that
inertia provides the only means for the existence of a dimple,
although if viscosity serves as a contributor its influence will
be O(A?) or smaller.
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