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Lubrication analysis of thermocapillary-induced nonwetting
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Recent interest in the phenomenon of thermocapillary-induced noncoalescence and nonwetting has
produced experimental evidence of the existence of a film of lubricating gas that prevents the two
surfaces in question~liquid–liquid for noncoalescence; liquid–solid for nonwetting! from coming
into contact with one another. Measurements further indicate that the pressure distribution in this
film creates a dimpled liquid free-surface. Lubrication theory is employed to investigate the coupled
effects of liquid and gas flows for a two-dimensional nonwetting case of a hot droplet pressed
toward a cold wall. The analysis focuses on the respective roles of viscous and inertial forces on
droplet deformation. Resultant droplet shapes show an influence of gas viscosity maintaining
nonwetting and of inertia contributing to a dimple. Previous analyses of thermocapillary-driven flow
in liquid layers and droplets model the gas as purely passive which cannot be the case in the present
application. © 2003 American Institute of Physics.@DOI: 10.1063/1.1608940#
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I. INTRODUCTION

The sustainment of a state of permanent noncoalesc
between two bodies of the same liquid or nonwetting o
solid normally wetted by a particular liquid is a relative
new area of investigation within fluid mechanics. Althou
examples of transient noncoalescence~e.g., bouncing and
floating water droplets! date back to the work of Rayleigh1–3

and Reynolds,4 it is the permanent variety—in particular, th
driven by thermocapillarity—that concerns us here. T
phenomenon occurs when the two surfaces attempting t
brought together are at sufficiently different temperatur
Thermocapillary convection, driven by the temperature
pendence of surface tension, exists not only in the liquid~s!
experiencing a surface-temperature gradient, but also in
surrounding gas through viscous action such that, under
proper set of conditions, gas is driven into the space betw
the surfaces, forming a lubrication film that keeps the liqui
liquid or liquid–solid surfaces sufficiently apart that attra
tive van der Waals forces remain weak.

The first systematic experiments investigating perm
nent, thermocapillary-induced noncoalescence were
formed by Dell’Aversanaet al.5 Subsequent work6 verified
directly, using interferometry, the existence of a lubricati
gas film of order microns in thickness for droplets of ord
millimeters in size~noncoalescence has been observed
droplets an order of magnitude larger than this!. Accurate
measurements of film thickness for the case of nonwet
reveal a dimple, an area of reversed curvature, in the liq
surface having a symmetric shape about the center of
droplet. Additional discussion of various aspects of the p
nomena may be found in the short article by Dell’Aversa
and Neitzel7 and in a pair of papers by Montiet al.8,9A more

a!Author to whom all correspondence should be addressed. Electronic
sumnerIlb@mercer.edu
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comprehensive review of both permanent and tempor
noncoalescence and nonwetting may be found in the re
review article of Neitzel and Dell’Aversana.10

Theoretical treatment of thermocapillary noncoalesce
and nowetting is complicated by the disparity of leng
scales involved. As mentioned in the previous paragra
droplets of millimeter~or larger! size generate gas films o
micron-sized thickness. Because the gas plays a central
in the process, it may not be neglected, particularly if one
interested in simulating accurately the free-surface shap
is the interaction between the liquid and gas through
normal-stress boundary condition that determines this sh
Monti et al.8,9 computed thermocapillary convection within
droplet whose shape was fixed by static considerations, u
the surface speeds obtained to calculate flow in the surrou
ing gas. The computed pressure distribution in the gas
indicates a high pressure in the center that could give ris
a dimple, but the free-surface position was not recalcula
in light of this.

The present work adopts an alternate approach using
brication theory to simultaneously determine the coup
flows in the liquid and gas for a two-dimensional~2-D! non-
wetting situation of a hot liquid droplet pressed agains
cold solid surface; 2-D noncoalescence and nonwetting h
been demonstrated experimentally by Nalevanko,11 so the
problem is of practical interest. The flow in the gas film, wi
its small thickness-to-length~aspect! ratio, is clearly a can-
didate for lubrication theory; its application to the flow in th
liquid phase implies the assumption of a thin, nearly fl
droplet.

There are several examples in the literature of the ap
cation of lubrication theory to problems involving the
mocapillary convection. Sen and Davis12 performed such an
analysis for 2-D flow in a slot bounded by differential
heated endwalls; this work was later extended by Se13

Ehrhard and Davis14 studied the influence of thermocapillar
il:
3 © 2003 American Institute of Physics
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convection on the inhibition or promotion of spreading
heated and cooled plates. Benintendi and Smith15 used the
Ehrhard and Davis formulation to examine the effects of s
coefficient and mobility capillary number on non-isotherm
spreading. Smith16 likewise used lubrication theory to stud
the migration of a thin droplet along a differentially heat
surface. In all of these applications, the gas bounding
liquid free-surface was regarded as passive since it play
central role in the flow under consideration.

In the related problem of Marangoni convection due
thermocapillarity experienced by liquid layers heated fro
below, experiments by Van Hooket al.17 on the initiation of
long-wave instabilities were unable to be explained with
so-called ‘‘single-layer’’ model considering the liquid only.
two-layer model developed by Golovinet al.18 employed a
multiple-time-scale technique~with convection in both lay-
ers!, while a two-layer lubrication model by Van Hoo
et al.19 considered only conduction in the gas layer. T
present work represents the first that we know of to use
brication theory to treat analytically both the liquid and g
flows.

In the following section we present the mathemati
formulation of the problem, discussing, in particular, the i
plications of various scaling choices. We then present res
for theO(1) andO(A) treatments, whereA!1 is the aspect
ratio in terms of which the solution is expanded. Final
results of computations for various choices of parameters
presented and discussed.

II. MATHEMATICAL FORMULATION

Steady, two-dimensional, liquid and lubricating-gas flo
fields coupled by a deformable interface are considered. B
phases are treated as incompressible, Newtonian fluids
ing constant material properties with the exception that
surface tension of the liquid is assumed to vary linearly w
temperature. As shown in Fig. 1, the liquid is bounded bel
by a flat, solid surface at constant temperatureTH and above
by the liquid/gas interface. The gas is bounded above b
flat, solid surface maintained at constant temperatureTC

,TH . Symmetry conditions are enforced on the liquid a
gas flows and the interface at the center of the dropletx
50. The contact line where the interface intersects the b
tom wall marks the end of the liquid droplet of length 2L,
and the gas is assumed to be open to surrounding am

FIG. 1. Problem domain and boundaries.
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conditions, although the present formulation, focusing on
lubricating flow in and above the droplet, leaves the ambi
gas flow arbitrary foruxu.L.

The formulation follows that of Sen and Davis12 with the
major differences attributed to our consideration of a no
passive gas and a curved leading-order interface shape
ject to a non-uniform temperature gradient. The govern
equations,

Ux1Vy50, ~1a!

rg~UUx1VUy!52Px1mg~Uxx1Uyy!, ~1b!

rg~UVx1VVy!52Py1mg~Vxx1Vyy!, ~1c!

UQx1VQy5ag~Qxx1Qyy!, ~1d!

represent continuity, balance of momentum in thex and y
directions~neglecting gravity!, and conservation of energy i
the gas; similarly

ux1vy50, ~2a!

r l~uux1vuy!52px1m l~uxx1uyy!, ~2b!

r l~uvx1vvy!52py1m l~vxx1vyy!, ~2c!

uTx1vTy5a l~Txx1Tyy!, ~2d!

apply in the liquid. The dependent variables of these eq
tions are thex and y components of velocity,U, V, and
pressureP in the gas andu, v, and p in the liquid, and
temperature,Q in the gas, andT in the liquid. The properties
of the fluids are the densities,rg andr l , viscositiesmg and
m l , and thermal diffusivitiesag anda l , whereg and l sub-
scripts distinguish the gas and liquid, respectively. T
boundary conditions modeling the effect of the walls, whe
uxu<L, are

u5v50, T5TH ~y50!, ~3!

U5V50, Q5TC ~y5H !. ~4!

Symmetry atx50 implies

u5vx5Tx50 ~y<h~x!!, ~5!

U5Vx5Qx50 ~y.h~x!!, ~6!

whereh(x) is the interface position. In index notation, inte
facial boundary conditions

@Si j # lnjni2@Si j #gnjni5sK
@Si j # lnj t i2@Si j #gnj t i5s ,i t i

k lT,ini5kgQ ,ini

@ui # lni50
@ui #g5@ui # l

6 ~y5h~x!!, ~7!

represent, respectively, the normal-stress, shear-stress,
transfer, and kinematic constraints coupling the gas and
uid flow fields, wheres is the surface tension,K denotes the
interface curvature, and the thermal conductivities are in
cated bykg andk l . In these equations,ni and t i define unit
vectors in the normal and tangential directions, respectiv
of the interface and, in vector notation
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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n5
1

N
~2hxî 1 ĵ !, ~8a!

t5
1

N
~ î 1hxĵ !, ~8b!

where

N5~11hx
2!1/2. ~8c!

The stress tensorSi j is defined by

@Si j #g52Pd i j 1mg~Ui , j1U j ,i ! ~9a!

and

@Si j # l52pd i j 1m l~ui , j1uj ,i !, ~9b!

where Ui and ui represent the velocities chosen to cor
spond to the liquid or gas flow, respectively, andd i j is the
Kronecker delta. The surface tension varies with tempera
according to

s5s ref2g~T2Tref!, ~10a!

where

Tref5
1
2~TH1TC!, ~10b!

andg is a property of the liquid assumed to be constant;
confine our attention to liquids for whichg.0.

Because the interface position,h(x), is also an unknown
variable, three additional constraints are necessary to c
plete the mathematical formulation. Constant liquid volum
must be maintained, requiring

E
0

L

h~x!dx5V̄, ~11a!

where V̄ equals the volume per unit length of liquid in th
droplet, and, to enforce symmetry,

hx50 ~x50!. ~11b!

A final constraint imposes a condition where the interfa
contacts the bottom wall. Because our motivation for t
analysis stems from experiments5,6,11 for which the liquid
droplet was affixed to a support with a sharp edge, we cho
to pin the contact-line position by requiring

h50 ~x5L !. ~11c!

Lengths are scaled byL andH in the x andy directions,
respectively, creating the presence of an aspect ratioA
5H/L, in the governing equations and interfacial bounda
conditions. The remaining variables are scaled with velo
ties u* and Au* , for the x and y directions, respectively, a
pressurem lu* /HA, a surface tensions ref , and a scaleDT
for the temperature deviation fromTref whereDT5TH2TC

and the thermocapillary velocity scale is

u* 5
gADT

m l
. ~12!

The resulting scaled governing equations for the liquid a

ux1vy50, ~13a!

ReA~uux1vuy!52px1A2uxx1uyy , ~13b!
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ReA3~uvx1vvy!52py1A4vxx1A2vyy , ~13c!

MaA~uTx1vTy!5A2Txx1Tyy , ~13d!

and for the gas

Ux1Vy50, ~14a!

r ReA~UUx1VUy!52Px1m~A2Uxx1Uyy!, ~14b!

r ReA3~UVx1VVy!52Py1m~A4Vxx1A2Vyy!, ~14c!

MaA~UQx1VQy!5a~A2Qxx1Qyy!, ~14d!

where

r5
rg

r l
, ~15a!

m5
mg

m l
, ~15b!

a5
ag

a l
. ~15c!

The Reynolds number Re and Marangoni number Ma
pearing in the equations are given by

Re5
r lu* H

m l
, ~16a!

Ma5
u* H

a l
. ~16b!

The boundary conditions become

u5v50, T5 1
2 ~ uxu<1,y50!, ~17!

U5V50, Q52 1
2 ~ uxu<1,y51!, ~18!

u5vx5Tx50 ~x50,y<h~x!!, ~19!

U5Vx5Qx50 ~x50,y.h~x!!, ~20!

and, on the interface,

2~p2P!1
2A2

N2
@vy2hxuy1A2hx~hxux2vx!#

2m
2A2

N2
@Vy2hxUy1A2hx~hxUx2Vx!#

5
A3

N3Ca
S 12

Ca

A
TDhxx , ~21a!

FA2hx~vy2ux!1
1

2
~12A2hx

2!~uy1A2vx!G
2mFA2hx~Vy2Ux!1

1

2
~12A2hx

2!~Uy1A2Vx!G
52

N

2
~Tx1hxTy!, ~21b!

Tx2A2hxTy5k~Qx2A2hxQy!, ~21c!

v5hxu, ~21d!
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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where

N5~11A2hx
2!1/2, k5

kg

k l
.

The capillary number Ca arising in the normal stress bou
ary condition is defined by

Ca5
m lu*

s ref
. ~22!

To complete the dimensionless form of the problem, the fi
constraints onh become

E
0

1

hdx5
V̄

HL
5V, ~23a!

hx50 ~x50!, ~23b!

h50 ~x51!. ~23c!

Our analysis treats the dimensionless equations
stream-function form, eliminating the explicit continuit
statements and pressure variables. The momentum and
ergy balances in the two phases become

ReA@~cycxyy2cxcyyy!1A2~cycxxx2cxcxxy!#

5cyyyy12A2cxxyy1A4cxxxx, ~24a!

MaA~cyTx2cxTy!5A2Txx1Tyy , ~24b!

r ReA@~CyCxyy2CxCyyy!1A2~CyCxxx2CxCxxy!#

5m~Cyyyy12A2Cxxyy1A4Cxxxx!, ~24c!

MaA~CyQx2CxQy!5a~A2Qxx1Qyy!, ~24d!

wherec and C designate the stream function in the liqu
and gas, respectively. The kinematic constraints are then
posed by requiring

c5cy50 at y50, ~25a!

C5Cy50 at y51, ~25b!

c5C50, and cy5Cy at y5h~x!, ~26!

and the normal- and shear-stress boundary conditions
come

2~p2P!1
2A2

N2
@2cxy2hxcyy1A2hx~hxcyx1cxx!#

2m
2A2

N2
@2Cxy2hxCyy1A2hx~hxCyx1Cxx!#

5
A3

N3 Ca
S 12

Ca

A
TDhxx , ~27a!
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FA2hx~2cxy2cyx!1
1

2
~12A2hx

2!~cyy2A2cxx!G
2mFA2hx~2Cxy2Cyx!1

1

2
~12A2hx

2!~Cyy

2A2Cxx!G52
N

2
~Tx1hxTy!. ~27b!

Restricting attention to a thin-film analysis, we seek
asymptotic solution in terms ofA as the small paramete
Thus, the analysis is restricted to the situation whereH
!L, implying a thin gap and a droplet that behaves as a t
film. The expansions for the interface position, as well as
gas and liquid stream-function, temperature, and pres
fields represented by

h5h0~x!1h1~x!A1O~A2!, ~28a!

c5c0~x,y!1c1~x,y!A1O~A2!, ~28b!

p5p0~x,y!1p1~x,y!A1O~A2!, ~28c!

T5T0~x,y!1T1~x,y!A1O~A2!, ~28d!

C5C0~x,y!1C1~x,y!A1O~A2!, ~28e!

P5P0~x,y!1P1~x,y!A1O~A2!, ~28f!

Q5Q0~x,y!1Q1~x,y!A1O~A2!, ~28g!

are substituted into the problem defined by Eqs.~23!–~27!.
The subsequent problems governing theO(1) and O(A)
components of these expansions are referred to as
leading- and first-order problems, respectively. The dim
sionless parameters in the analysis are assumed to be o
ders

Ca5O~A3!, ~29a!

Ma5O~A!, ~29b!

Re5O~1! ~29c!

with

r,m,a, and k5O~1!. ~30!

The choice Ca5O(A3) is critical to the development o
an asymptotic solution since other choices lead to ma
ematical obstacles. For Ca5O(A2) and larger, the leading
order pressure fields are constant resulting in a static lead
order flow field, while Ca5O(A4) or smaller, meaning Ca
5o(A4), results in a flat interface to leading order. In th
latter case, an interface with zero curvature is subseque
found within the then necessary boundary layer near the c
tact line which prohibits matching to the outer flow. Th
choice in our case of Ca5O(A3) results in a two-
dimensional leading-order flow field with a curved interfac
With interface curvature, the contact-line condition is sat
fied without the presence of a boundary layer. The tw
dimensional flow field permits recirculation in the absence
boundary layers. In the thermocapillary slot flow problem
Sen and Davis12 with an O(A4) capillary number, the
leading-order solutions contain a flat interface and o
dimensional core flow requiring boundary layers at the e
walls to allow recirculation. Our lack of a one-dimension
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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core flow can be explained by recognizing some phys
characteristics of the problem considered herein. In the p
lem of Sen and Davis, a uniform interfacial-temperature g
dient spans the length of the leading-order interface wh
permits a fully developed interior flow. In the present dro
let, the interfacial-temperature gradient decays to zero at
center of the droplet as required by Eq.~19!. Thus, the
leading-order bulk fluid motion must also decay, never
lowing a fully developed flow. A reexamination of the the
mocapillary slot flow problem with Ca5O(A3) by Sen13

found an entirely two-dimensional leading-order flow a
though boundary layers remained necessary.

Consistent with lubrication theory, the nature of t
asymptotic, thin-film analysis neglects terms in the leadi
and first-order governing equations that involve derivativ
in the direction along the gap length. The resulting flow a
temperature conditions in the solutions atx50,1 dependent
implicitly upon the end constraints onh(x). It can be shown
that imposing symmetry on the interface atx50 with Eq.
~23b! also enforces the kinematic requirement of symme
on the velocity and thermal fields in both fluid phases. Wi
out a kinematically prescribed boundary for the gas ax
51, the resulting conditions found in the gas there canno
substantiated. The pinned-contact-line condition of Eq.~23c!
causes a segregating vertical streamline through the co
line wherec50 as shown in Fig. 2, implying complete re
circulation above the droplet and forbidding ambient gas
trainment. The solution is not found to be symmetric ab
this segregating streamline in that neithervx nor Qx equals
zero. Segregating the flow abruptly atx51 lacks physical
rationale even at leading order while neglecting inertia. T
shear stress induced on the interface drives flow in the t
sition region near the contact line lowering the local g
pressure precisely where the ambient gas remains acces
Incorporating a transition layer matching the lubricating flo
above the droplet to the ambient gas conditions would al
the implementation of the appropriate physics governing
trainment. Ambient conditions will then influence the flow
the transition region with thickness ofO(A) or smaller, but
cannot impact the innermost lubrication flow near t
dimple. Since, in the present work we focus on investigat
the presence of the dimple at the center of the droplet,
solving the gas transition layer atx51 for a particular am-
bient flow is not necessary. The recirculation of the gas fl
near the contact line in the solutions that follow is physica
unrealistic and could be corrected when warranted by res
ing the transition layer.

FIG. 2. Gas flow transition layer.
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The choice for the Marangoni number to beO(A) re-
moves the influence of convection so that the thermal fiel
nearly pure conduction up to first order and thus independ
of the value of Ma anda. Avoiding the complications of
convection until second order allows a simple and dir
means to investigate the role of inertia. Thus, the pres
effort represents only a first step into a complete investi
tion of the possible consequences of inertia.

The Reynolds number, representing the relative imp
tance of inertial and viscous forces, is crucial to our inves
gation into droplet deformation. A Reynolds number ofO(1)
or smaller inA ensures that viscosity dominates the leadin
order flow as lubrication theory dictates, so that the leadi
order flow does not depend on Re orr. In the case of Re
5O(1), the influence of inertia is observed immediately
the first-order correction. Choosing Re5O(A) or smaller
simply delays the inclusion of inertia to smaller orders.

Although not appearing in the problem definition, th
orders of Ma and Re implicitly dictate the Prandtl number
to beO(A), since Pr5Ma/Re.

A. The leading-order problem

ConsideringA as an independent parameter, a probl
corresponding to each order expansions~28a!–~28g! can be
determined. The leading-order problem consists of the g
erning equations

c0yyyy50, ~31a!

T0yy50, ~31b!

C0yyyy50, ~32a!

Q0yy50, ~32b!

subject to boundary conditions

c0y5c050, and T05 1
2 ~y50!, ~33!

C0y5C050, and Q052 1
2 ~y51!, ~34!

and on the interface wherey5h0 ,

c05C050, c0y5C0y , ~35a!

c0yy2mC0yy5T0x1h0xT0y , ~35b!

P02p05
h0xx

C
, ~35c!

T0y5kQ0y , ~35d!

T05Q0 , ~35e!

whereC arises when enforcing the order of Ca by using
5CA3. To complete the problem definition,

E
0

1

h0dx5V̄, ~36a!

h0x50 ~x50!, ~36b!

h050 ~x51!, ~36c!

constrain the unknown interface positionh0(x).
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Direct integration of Eqs.~31! and ~32! and application of
the boundary conditions,~33!, ~34!, ~35a!, ~35b!, ~35d!, and
~35e! leads to

c05
2k~h021!h0x

4M0K0
2h0

~y32h0y2!, ~37a!

C05
2kh0h0x

4M0K0
2~h021!

@y3212~h012!~y221!

1~2h011!~y21!#, ~37b!

T05
2k

K0
y1

1

2
, ~37c!

Q05
21

K0
~y21!2

1

2
, ~37d!

whereM05h0(m21)11 andK05h0(k21)11, providing
an analytical solution for the flow and temperature fields
terms of a yet unknown leading-order interface posit
h0(x). The leading-order momentum-balance equatio
~13b!, ~13c!, ~14b!, and~14c! then show that

P0y5p0y50, ~38a!

p0x5
23~h021!kh0x

2M0K0
2h0

, ~38b!

P0x5
23mkh0h0x

2M0K0
2~h021!

. ~38c!

Differentiating Eq.~35c! with respect to thex direction and
substituting for the pressure fields yields

h0~h021!M0K0
2h0xxx1

3
2Ck~h0M01h021!h0x50,

~39!

which governs the leading order interface position sub
to the auxiliary conditions of Eqs.~36a!–~36c!. The non-
linear system composed of Eqs.~39! and ~36a!–~36c! is
solved numerically with a second-order-accurate cent
differencing scheme on a uniformly spaced grid. For con
nience, a second-order-accurate backward-difference
proximation is employed at a single node neighboringx
51. An iterative computation procedure imposes eithe
circular-arc interface shape as assumed by Wood20 or a pre-
viously computed solution in nearby parameter space fo
initial guess ofh0 .

B. The first-order problem

The first-order problem in the case with Re5O(1) is de-
fined by the governing equations

Re~c0yc0xy2c0xc0yy!y5c1yyyy, ~40a!

T1yy50, ~40b!

r Re~C0yC0xy2C0xC0yy!y5mC1yyyy, ~41a!

Q1yy50, ~41b!

with boundary conditions
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c1y5c150, and T150 ~y50!, ~42!

C1y5C150, and Q150 ~y51!, ~43!

required to satisfy no slip, no penetration, and isotherm
plates. The first-order version of the interfacial bounda
conditions is given by

c15C15
2k~h021!h0h0x

4M0K0
2

h1 , ~44a!

kh0x

M0K0
2

h11c1y5C1y , ~44b!

c1yy2mC1yy52T1x2h0xT1y2T0yh1x2G0h1 , ~44c!

P12p15
h1xx

C
, ~44d!

T1y5kQ1y , ~44e!

and

T15Q11
~k21!h1

K0
, ~44f!

where

G05
T0x

h0
1

3k

2 S h021

h0
2

mh0

h021D ~h021!h0x

h0M0K0
2

apply aty5h0 . Finally, the correction of the interface pos
tion is constrained by

E
0

1

h1dx50, h1x50 ~x50!, and h150 ~x51!.

~45!

We solve the first-order problem with the same metho
ology applied to the leading order problem. The govern
equations~40b! and ~41b! and auxiliary conditions~42!,
~43!, and~44e!, ~44f! provide

T15
k~k21!h1

K0
2

y ~46!

and

Q15
~k21!h1

K0
2 ~y21! ~47!

for the correction to the temperature field in terms of t
unknown interface correctionh1 . Equations~40a! and~41a!
imply solutions of the form

c15ReE E E ~c0yc0xy2c0xc0yy!dy3

1
1

6
C1~x!y31

1

2
C2~x!y21C3~x!y1C4~x!, ~48!

and
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C15
r

m
ReE E E ~C0yC0xy2C0xC0yy!dy3

1
1

6
B1~x!y31

1

2
B2~x!y21B3~x!y1B4~x!, ~49!

whereCi(x) and Bj (x) represent arbitrary functions due
the integration over they variable. These eight function
have analytical expressions in terms ofh0 andh1 dictated by
the auxiliary conditions~42!, ~43!, ~44a!–~44c!. The first-
order normal-stress boundary condition~44d! then governs
the interface correctionh1 and takes the form

mB1~x!2C1~x!5
h1xxx

C
, ~50!

whereB1(x) andC1(x) are found to be linear operators o
h1 andh1x . The resulting nonhomogeneous linear equat
is solved with the finite-difference techniques employed
the leading-order problem.

Considering Re5O(A) instead would remove the consid
eration of inertia from the first-order problem resulting in
linear, but homogeneous equation. The first-order correc
with a relaxed volume constraint could then be specified
within the multiplication of an arbitrary constant implying
unique interface shape independent of volume. The net
ume of the correction must also be a multiple of this co
stant. Because maintaining a fixed liquid volume, indep
dent ofA, necessitates a net zero volume constraint for e
interface correction, a trivial solution of zero for the interfa
correction cannot be avoided. The governing equation of
second-order problem would be nonhomogeneous due to
now present inertia terms permitting a nonzeroO(A2) cor-
rection.

These leading- and first-order problems for Re5O(A)
also apply for the case of Re5O(A2) and smaller. The
second-order correction for the case with Re5O(A2), which
remains viscously dominated, is not necessarily zero as is
viscously dominated first-order correction, and may lead
the formation of a dimple. Complications arise withx- and
y-direction derivatives now significant in the momentum b
ance. The flow-field correction might then be solved nume
cally as was done by Sen and Davis.12

To gain insight regarding the importance of inertia in t
dimple formation, we present solutions to the simpler pro
lem of Re5O(1) to incorporate inertia in the first correction
We are able to show then how the presence of inertia in
ences the formation of a dimple but cannot preclude the p
sibility of a dimple shape due to anO(A2) viscous effect.
Furthermore, the choices of Re5O(1) and Ma5O(A) re-
strict the Prandtl number toO(A) for the solutions presente
herein.

III. RESULTS

The results to be presented begin with three cases:~1! a
solution for a single set of parameters;~2! a case identical to
~1! but with a larger liquid volume fraction; and~3! a case
identical to ~1! with a smaller value for the therma
conductivity ratio. These are followed by a series of inves
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gations into the influence of defined parameters on dro
shape. The following parameter values define case~1!:

V50.7, C51, m50.1, k50.1,

r50.001, Re55000.

The two parametersr and Re impact the role of inertia an
thus only influence the correction. The relatively large va
for Re serves only to provide a distinguishable presenta
of the droplet-shape correction.

The viscously dominated leading-order solution for ca
~1! is given in Fig. 3, which shows both streamlines a
isotherms. The dotted curve represents the droplet interf
contour values are equally spaced. These solutions are
evant in the limit asA approaches zero which correspon
physically to the limit asL approaches infinity implying a
long, flat droplet. The streamlines show a single-cell flo
structure in the liquid below the interface and another in
gas above. The leading-order flow satisfies the kinem
boundary condition on the interface@Eq. ~26!# identically.
The complete recirculation of the gas above the droplet
consequence of our choice not to resolve the transition la
near x51. The isotherms show the pure-conduction st
with a discontinuous slope in the contours at the interfa
due to the change in thermal conductivity sincekÞ1. Sym-
metry in the temperature field can be observed atx50, while
the nonzero heat addition atx51 is not meaningful in the
absence of a transition-layer correction.

The interface-temperature gradient that drives the fl
decays to zero asx approaches zero as dictated by Eq.~19!.
With a negligible driving mechanism nearx50 and no iner-
tia, the flow simply dissipates in the interior where th
dimple is expected to form. To search for a possible dimp
shape at leading order, we examine case~2!, increasingV to

FIG. 3. Leading-order streamlines and isotherms for case~1!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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simulate an attempt to force the droplet to wet the w
Figure 4 shows the leading-order solution withV set to 0.8.
Recall that the present analysis does not permit wetting
thus this solution may not correspond to a realizable s
nario. Still, under these conditions of extreme droplet def
mation, we find that, rather than prompting a dimple, t
impact on the interior flow lessens. In a second attemp
find a leading-order dimple, for case~3!, we decrease the
value ofk with the intent to redistribute the driving interfa
cial temperature gradient more toward the center of the d
let. The resulting solution shown in Fig. 5 lacks an inter
region of purely dissipative flow, and, although the drop
shape is significantly altered, the interface curvature cha
teristic of a dimple remains absent. Comparing the result
Figs. 3–5, we notice that the location of the center of
flow cell follows that of the driving mechanism, i.e., th
region with a relatively larger interfacial temperature gra
ent. Finally, a complete parameter search reveals no evid
of the possibility for anO~1! dimpled shape. The paramet
influences on droplet shape are discussed in the followin

The first-order corrections for case~1! are shown in Figs.
6 and 7. The droplet-shape correction,h1 is shown in Fig.
6~a! along with the leading-order shape and the result
corrected shape for two values ofA. A dimpled shape ap-
pears as a result of the correction. The leading- and fi
order versions of the normal-stress boundary condition@Eqs.
~35c! and ~44d!# specify the consequential pressure diffe
ence across the interface shown in Fig. 6~b!. The pressure
field in each phase has only anx-direction dependence t
these orders inA where the interface curvature dictates t
pressure difference. Comparing Figs. 6~a! and 6~b! reveals
the necessary positive pressure difference where the dim
forms and appropriate correspondence between the inflec

FIG. 4. Leading-order streamlines and isotherms for case~2!.
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points in the droplet shape and zero values in the pres
difference. The first-order correction of the pressure diff
ence P12p1 reveals a local maximum located nearx
50.25, observed to correspond with a local maximum in
interface curvature, and a second, smaller local maxim
located nearx50.5. This second local maximum shows th
first evidence of interface curvature nearx50.5 which is
shown to be more discernible in later cases discussed in
following.

FIG. 5. Leading-order streamlines and isotherms for case~3!.

FIG. 6. Interface correction for case~1!: ~a! droplet-shape,~b! resulting
interfacial pressure difference.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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Figure 7 presents the streamlines and isotherms of
correction. In these graphs, the leading-order interface p
tion distinguishes the gas and liquid phases although the
terface correction is nonzero. This presentation is chosen
to the nature of the asymptotics employed, which requ
the solution corrections to be independent ofA @as shown in
Eqs. ~28a!–~28g!#. The streamline correction consists of
two-cell flow structure in the liquid and again in the ga
Notice that the amplitude of the stream-function correction
an order of magnitude larger than the leading-order stre
function while the droplet-shape correction remains com
rable to the leading-order droplet shape. This can be
pected since Ca isO(A3) while Re isO(1). Theisotherms
deviate from pure conduction due to the implicit influence
the leading-order flow field on the temperature correction

The resulting flow and temperature fields corrected
O(A) are shown in Fig. 8, for the choiceA50.2. The fluid
phases remain distinguished with the leading-order sh
marked by a dotted line. The dashed line indicates the
rected droplet shape forA50.2. The streamlines, showin
the dual-cell structure of the correction in each phase,
dominated by the correction as was found necessary
present a distinguishable adjustment of the leading-o
shape for reasons discussed above. The leading-order
perature field remains evident in the corrected flow. The M
rangoni number ofO(A) delays the appearance of the co
vection terms in the energy balance untilO(A2) so that the
next correction to the thermal field would be expected
dominate as is the case of the first-order stream function

Figure 9 considers the influence ofC ~recall Ca5CA3)
with remaining parameters as specified for case~1!. Increas-
ing C simulates a reduction in surface tension and con
quently an increased surface flexibility. VaryingC from 0.2
to 10 increases the leading-order droplet deformation du

FIG. 7. Stream-function and isotherm corrections for case~1!.
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the presence of the upper wall as shown in Fig. 9~a!. The gap
width between the droplet and the wall increases but with
evidence of the curvature necessary for a dimple. The dim
influence of the interface correction increases as shown
Fig. 9~b!. For sufficiently high values ofC, a critical point of
zero slope is found to develop away fromx50. This influ-
ence can be seen in the corrected droplet shapes of Fig.~c!.
The increase in interface curvature near this critical poin
associated with an increase in the local pressure differe
across the interface which for the case ofC51 appears as
the local maximum nearx50.5 in Fig. 6~b! although the
consequential interface curvature is not visually distingui
able as in the cases withC55 or 10. Given the thin-film
restriction of this analysis, the influence of inertia via t
correction decays far into the interior.

The influence of liquid volumeV is similar to that ofC
as can be seen in Fig. 10, the primary difference being
increasingV decreases the gap width contrary to the beh
ior with varying C. IncreasingV emphasizes droplet defor
mation due to the wall in a similar fashion as increasingC;
the region of zero curvature about the center of the lead
order droplet shape expands. Furthermore, the interface
rections given in Fig. 10~b! show, although on a differen
scale, shapes similar to those found when investigating
influence ofC even in the formation of a critical point awa
from x50 for the larger volumes considered. Through t
implicit dependence of the correction on the leading-or
flow, C and V remain independent parameters in the fir
order problem despite their similar influences. The correc
droplet shapes computed for increasing volumes show l
impact on droplet height in the interior due to the cancel
influences of the leading-order shape and the correc
while, away from the interior, the growth of a bulge is o

FIG. 8. Streamlines and isotherms corrected toO(A) for case~1!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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served. The consequence of the bulge shape is again to
a dimple.

The influence of varyingm and thus the viscosity of the
gas relative to that of the liquid is presented in Fig. 11 a
reveals the role of viscosity in the lubricating layer. Figu
11~a! shows that increasingm increases the leading-order ga
width. The equations become stiff for values ofm below
0.01. The corrections in Fig. 11~b! show the dimple shape
for small values ofm with an amplitude that decays to ze
asm increases. The role of gas viscosity contributes to ma
taining droplet separation from the opposing wall but
duces the impact of inertia in the correction.

The density ratio,r, influences the correction as show
in Fig. 12. Decreasingr and thus the density of the ga
relative to that of the liquid reduces the dimpling influence
the correction. However, in the limit asr approaches zero
the correction approaches a nonzero amplitude corresp
ing approximately to the case withr50.01. The inertia in
both the liquid and gas influence the size of a dimple, an
dimple exists in the absence of inertia in the gas.

With the Reynolds number chosen to beO(1), thevalue
of Re appears as a scale of the nonhomogeneous term i
linear differential equations@Eqs.~40a! and~41a!# governing
the flow-field correction. The solution can consequently

FIG. 9. Influence ofC on droplet shape with remaining parameters valu
corresponding to case~1!: ~a! leading-order solution,~b! first-order correc-
tion, ~c! solution corrected toO(A).
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written in our case as a single solution scaled by Re such
if c̄ corresponds to Re51, thenc5Rec̄ provides a solution
for any fixed value of Re. In the limit as Re approaches ze
the correction approaches zero and at the same rate, the
order problem definition approaches that corresponding
the Re5O(A) case. We can again conclude that anO(A)
solution does not exist without the consideration of inerti

IV. CONCLUSIONS

A lubrication analysis has been performed for
thermocapillary-driven nonwetting droplet focusing on t
respective influences of viscosity and inertia. The pres
analysis neglects the effects of gravity and considers a t
dimensional, symmetric liquid droplet coupled at the surfa
with a non-passive gas. Although the lubricating fluid is r
ferred to as a gas, the results found are equally applicab
immiscible-liquid pairs.

Dimensionless parameters are specified as fixed or
of the aspect ratio. Due to the curved droplet shape and n
uniform interfacial temperature gradient, a capillary numb
of O(A3) was found necessary to facilitate analytical resu
The order of the Marangoni number remained fixed atO(A)
to delay the influence of convection on the thermal field a
allow the analysis to focus on the roles of viscosity and

s
FIG. 10. Influence ofV on droplet shape with remaining parameters valu
corresponding to case~1!: ~a! leading-order solution,~b! first-order correc-
tion, ~c! solution corrected toO(A).
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2933Phys. Fluids, Vol. 15, No. 10, October 2003 Lubrication analysis of thermocapillary-induced nonwetting
ertia. The consequences of various choices for the orde
the Reynolds number are discussed and results are pres
for the case with the Reynolds number ofO(1).

The complete recirculation within the gas flow above t
droplet in the presented solutions is a consequence of a
glected transition layer in the gas that would permit match
the lubricating layer to ambient gas conditions. With co
cerns focused at the center of the droplet, we chose to
resolve the transition layer that we reason would have lit
if any effect on the observed dimpling.

TheO(1) influence of gas viscosity contributes to mai
taining a nonwetting droplet and theO(A) influence of iner-
tia creates a dimpled shape in the droplet surface. TheO(1)
influence of viscosity does not reveal a dimple and, afte
limited search over parameter space, provides no evide
for possible regimes allowing anO(1) dimple. The param-
eter influences considered include the capillary number,

FIG. 11. Influence ofm on droplet shape with remaining parameters valu
corresponding to case~1!: ~a! leading-order solution,~b! first-order correc-
tion.

FIG. 12. Influence ofr on droplet shape with remaining parameters valu
corresponding to case~1!.
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liquid volume fraction, the viscosity ratio, the density rat
and the Reynolds number.

Additionally, viscosity has noO(A) impact in that this
correction without inertia is shown to be zero. TheO(A2)
influence of viscosity alone warrants consideration althou
it is not investigated herein. Thus, we cannot conclude t
inertia provides the only means for the existence of a dimp
although if viscosity serves as a contributor its influence w
be O(A2) or smaller.
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