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ABSTRACT 

Pairs of conjugate donor-acceptor fluorescent probes have proven themselves useful in 

stimulated emission depletion (STED) microscopy in recent years. For instance, it has been 

shown that the lifetime of said probes directly correlates to the resolution of the microscope. 

However, once the lifetimes of the probes have been optimized, it is desirable to control their 

fluorescence in order to improve the resolution further. Here, we propose combining model-

free control with sliding mode control to track nanosecond pulses of red-shifted acceptor 

fluorescence in order to inhibit visible light emitted from the image plane, shrink the point 

spread function, and subsequently improve the resolution of the microscope. This is achieved 

by automatic adjustment of the STED laser beam pump power. This controller is numerically 

simulated against a generic model created from Förster resonance energy transfer (FRET) 

theory. However, since it is data-driven, it can be easily applied to various physical systems 

with drastically different dynamics. This work provides a reliable theoretic control solution to 

modern super resolution microscopy for biological imaging. 

INTRODUCTION 

Stimulated emission depletion (STED) microscopy has gained attention in recent 

years in the field of biological imaging and earned the 2014 Nobel Prize in Chemistry.  

Using a unique array of laser beams, the STED microscope images beyond Abbe’s 

diffraction limit of light [1-5].  While an excitation laser beam illuminates a sample, light 

from a donut-shaped depletion laser beam is superimposed on the sample to suppress all 

its fluorescence except that from a nano-meter size point spread function in its centre.  

Moreover, conjugate donor-acceptor fluorescent probes have been used in the microscope 

to allow for switchable fluorescence at selectable wavelengths [6].  While research into the 



selection of these probes has improved the resolution of the microscope, we propose a new 

technique for doing such. 

The geometry of the point spread function of the STED microscope is established 

by the microscope’s physical engineering. This implies that the resolution of the 

microscope is directly proportional to the visible light emitted from the focal plane. 

Therefore, being able to precisely control the visible fluorescence emitted by probes in the 

microscope would offer an optimization technique for improving its resolution. 

Control engineering has been applied to photonic systems numerous times [7-

10].  However, much of the previous work has required an accurate model of the system 

dynamics in order to provide effective control.  Recently, photonic control has begun to 

focus on data-driven efforts in order to overcome model uncertainties and inaccuracies 

[11]. In this paper we seek to control the system for which the model is accurate up to a 

certain degree; i.e., the model uncertainties are bounded. Our control law, which does not 

require the exact model of the system, is constructed via tools from Model-Free Control 

and Sliding Control theory. The proposed controller is validated in numerical simulation 

against a general model of conjugate donor-acceptor fluorescent probes from Förster 

resonance energy transfer (FRET) theory [12-13].  This demonstrates the controller’s 

robustness and flexibility to transfer to different microscope set-ups with different 

fluorescent probes.  By precisely controlling probe fluorescence via automatic adjustment 

of the depletion laser beam pump power, the proposed controller improves the capabilities 

of the STED microscope. 

METHODS 

Modelling fluorescent probes using Förster resonance energy transfer 

FRET describes the energy transfer relationship between conjugate donor-

acceptor fluorescent probes. Donor molecules are excited by the excitation beam of the 

STED microscope.  They then transfer their energy through FRET to their conjugate 

acceptor molecules. The wavelength of the STED laser beam is selected to be at the red 

end of the emission spectrum of the excited acceptors in order to cause rapid depletion of 

their excited state and supress the visible fluorescence emitted from the focal plane to 

improve the resolution of the microscope. A set of linear differential equations, Equation 

(1), reported in [6] describes the interactions between conjugate probes: 

 

�̇�𝑑𝑎 = 𝑘𝑑𝑥𝐷𝑎 + (𝑘𝑎 + 𝑘𝑆𝑇𝐸𝐷)𝑥𝑑𝐴 − 𝑘𝑒𝑥𝑐𝑥𝑑𝑎   

�̇�𝐷𝑎 = 𝑘𝑒𝑥𝑐𝑥𝑑𝑎 + (𝑘𝑎 + 𝑘𝑆𝑇𝐸𝐷)𝑥𝐷𝐴 − (𝑘𝑑 + 𝑘𝐹)𝑥𝐷𝑎   

�̇�𝐷𝐴 = 𝑘𝑒𝑥𝑐𝑥𝑑𝐴 − (𝑘𝑎 + 𝑘𝑆𝑇𝐸𝐷 + 𝑘𝑑)𝑥𝐷𝐴   

�̇�𝑑𝐴 = 𝑘𝑑𝑥𝐷𝐴 + 𝑘𝐹𝑥𝐷𝑎 − (𝑘𝑎 + 𝑘𝑆𝑇𝐸𝐷 + 𝑘𝑒𝑥𝑐)𝑥𝑑𝐴  (1)  

 

Here, capital and lowercase letters represent the excited and ground states, respectively. 

𝑥𝑖𝑗 represents the population probability of the corresponding states, 𝑘𝑎 and 𝑘𝑑 represent 

the acceptor and donor fluorescent rates, 𝑘𝑒𝑥𝑐 represents the excitation rate of the donor, 

𝑘𝑆𝑇𝐸𝐷 represents the STED rate of the acceptor, and 𝑘𝐹 represents the FRET rate. Note that 

probe fluorescence described here behaves nonlinearly as excitation and STED rates 

increase, which is pivotal to super-resolution imaging. Acceptor fluorescence is given by: 

 

𝐹𝑎 = 𝑘𝑎(𝑥𝐷𝐴 + 𝑥𝑑𝐴). (2) 

 

 



Data-driven Sliding Mode Control 

Model-Free Control 

In control engineering, given a dynamical system, feedback control is used to 

tailor the behaviour of the system in a desired manner. A dynamical system is any system 

with moving parts or variables that change with respect to an independent variable such as 

time. A laser system is a dynamical system. Typically, there are a set of time varying 

quantities associated with a system’s behaviour that need to be controlled. If these 

quantities can be measured or observed externally, they are referred to as the outputs of 

the system, while the ones that cannot be measured or observed through external 

observation are referred to as the internal states of the system. The inputs of the system are 

a set of external signals that drive the system. Control strategies can be categorized into 

two fundamental groups: state-feedback, where the system outputs are controlled by 

adjusting the inputs based on the current state information, and output-feedback, where the 

adjustment of the inputs is done based on the current output. In the state-feedback regime, 

it is essential to have a mathematical representation of the dynamical system in the form 

of a system of differential equations, often known as the state-space realization of the 

system since the notion of state stems from the solutions of these differential equations. 

Therefore, state-feedback is inherently model-based. The output-feedback strategy can be 

further categorized into model-based output feedback and model-free output feedback. At 

the heart of the model-free output feedback control strategy is observing the outputs 

externally and feeding that information back to the controller which adjusts the inputs to 

achieve desired outputs without requiring any knowledge of the system model. 

In the early 2010s, a robust model-free control method was developed by Fliess 

and Join [14], where the dynamics of the system are roughly estimated as follows 

 

𝑦(𝑚) = 𝐹(𝑡) + 𝛼𝑢(𝑡), (3) 

 

where 𝑦 is the output of the system, 𝑦(𝑚) is the 𝑚𝑡ℎ time derivative of the output, 𝐹 

accounts for the unknown dynamics and external disturbances of the system, 𝛼 is an 

unknown parameter to be tuned and 𝑢(𝑡) is the input to the system. This is called the 

phenomenological model of the system. In systems with multiple inputs and multiple 

outputs (MIMO), 𝑦, 𝐹 and 𝑢 are vectors with multiple components. This set up will work 

for both MIMO and single-input-single-output (SISO) systems as long as the number of 

inputs is the same as the number of outputs. The goal here is to get the system output to 

track a desired output signal denoted by 𝑦𝑑, which is equivalent to diminishing the error 

signal defined as 

 

𝑒 = 𝑦 − 𝑦𝑑 . (4) 

  

First, consider the dynamics of the error system having the following structure, 

 

∑ 𝐾𝑖𝑒
(𝑖) = 0

𝑚

𝑖=𝑛
 

(5) 

 

Here, 𝑒(𝑖) denotes the 𝑖𝑡ℎ derivative of the error when i > 0, and the 𝑖𝑡ℎ  iterative integral 

of the error when i < 0, while 𝐾𝑖 denotes the constant coefficients to be determined. Since 

the error system takes the form of an ordinary linear differentio-integral equation with 

constant coefficients, it is well known that a set of 𝐾𝑖, 𝑛 ≤ 𝑖  ≤ 𝑚, exists such that the error 

system is exponentially stable. Exponential stability of the error system guarantees that the 



error, 𝑒, will decay to zero at an exponential rate during a finite time. Now observe that 

from Equation (4), Equation (5) we have 

 

𝑦(𝑚) = 𝑦𝑑
(𝑚)

−
1

𝐾𝑚

(∑ 𝐾𝑖(𝑦(𝑖) − 𝑦𝑑
(𝑖)

)
𝑖=𝑚−1

𝑖=𝑛
). 

(6) 

 

Then, the feedback control law can be derived from Equations (3) and (6) as 

follows: 

 

𝑢 =
1

𝛼
(−𝐹(𝑡) + 𝑦𝑑

(𝑚)
−

1

𝐾𝑚

(∑ 𝐾𝑖(𝑦(𝑖) − 𝑦𝑑
(𝑖)

)
𝑖=𝑚−1

𝑖=𝑛
)). 

 

(7) 

 

However, since 𝐹(𝑡) is unknown it is necessary to perform its approximation in real time. 

Since 𝐹(𝑡) is an integrable function, it can be approximated by piecewise constant 

functions on a small interval, 𝑇, and the approximation denoted by �̂� can be computed as 

follows using the input 𝑢 from the previous time step: 

 

�̂� =
1

𝑇
∫ (𝑦𝑑

(𝑚)
−

1

𝐾𝑚

(∑ 𝐾𝑖(𝑦(𝑖) − 𝑦𝑑
(𝑖)

)
𝑖=𝑚−1

𝑖=𝑛
) − 𝛼𝑢)  𝑑𝜏

𝑡

𝑡−𝑇

. 
 

(8) 

 

Notice that the feedback control law in Equation (7) does not require the 

knowledge of the model to achieve the control objective. Moreover, in the case where 𝑚 =
1, the feedback law does not require the derivatives of the output; therefore, the controller 

stays robust even in the presence of noise at the output. The method is extremely powerful 

in cases where there are no reliable mathematical models available for the systems that 

need to be controlled. For our problem of FRET control, we consider a situation where a 

mathematical representation with limited reliability exists. Therefore, to leverage the 

available partial knowledge of the model, we also draw from Sliding Control, another 

control method, which is suitable for controlling systems with bounded uncertainties. 

Specifically, we use Fliess’s phenomenological model in Equation (3) to approximate the 

dynamics of the system, which serves as our mathematical representation of the laser 

system dynamics with bounded uncertainties. 

Sliding Control 

Sliding Control is a well-developed theory from so-called “robust” control—a 

branch of control theory that focuses on systems with model uncertainties. This technique 

was developed in part by Slotine & Li in the early 1990s [15]. Here, we propose using the 

uncertain phenomenological model of the system dynamics from Model-Free Control in 

traditional Sliding Control. Doing so creates a model-free, exponentially stable controller. 

Assume that the uncertain model of a system’s dynamics is represented by 

Equation (3). Define a vector of measurable output error 

 

�̅� = [𝑒(𝑛), . . . , 𝑒(𝑚)]𝑇. (9) 

 

Here, the variable of interest is 𝑒(𝑛), 𝑛 may be any integer corresponding to the nth iterative 

derivative or integral, 𝑚 is the order of Equation (3), and 𝑚 > 𝑛. It is common practice to 

select 𝑛 = 0 or − 1 since these errors tend to be measurable in real time. Now, define a 

function 

 



𝑠(𝑦, 𝑡) = (
𝑑

𝑑𝑡
+ 𝜆)

𝑚−𝑛−1

𝑒(𝑛). 
(10) 

 

Here 𝑠 = 0 is termed the sliding surface, where 𝜆 > 0 and represents the slope of the 

sliding surface, which is chosen by the designer. The exponent 𝑚 − 𝑛 − 1 is chosen to be 

one less than the length of the error vector. The purpose of this equation is to replace a 

high order tracking problem with a 1st order stabilization problem. The goal of the 

controller will be to keep 𝑠 equal to zero, which would result in all zero entries in �̅�. This 

is the same goal as Model-Free Control, which may lead one to notice the similarities 

between Equation (5) and Equation (10).  For purposes that will be clear later, Equation 

(10) is rewritten as a binomial series in Equation (11). 

 

𝑠(𝑦, 𝑡) = ∑ (
𝑚 − 𝑛 − 1

𝑘
) 𝑒(𝑚−1−𝑘)𝜆𝑘

𝑚−𝑛−1

𝑘=0

 

(11) 

 

To ensure exponentially stable error dynamics, a control law must be chosen to 

satisfy 

 
1

2

𝑑

𝑑𝑡
𝑠2 ≤ −𝜂|𝑠| , 

(12) 

 

which is called the “sliding condition”. Here, 𝜂 is a strictly positive real number. This 

inequality requires that the squared distance to the sliding surface strictly decreases, which 

makes the surface an invariant set.  In other words, the output trajectories are guaranteed 

to reach the surface in finite time regardless of where they start. Given the sliding 

condition, the system’s output trajectories “slide” along the sliding surface once they reach 

it—at which time it is in the “sliding mode”: 

 

�̇� = 0 = ∑ (
𝑚 − 𝑛 − 1

𝑘
) 𝑒(𝑚−𝑘)𝜆𝑘

𝑚−𝑛−1

𝑘=0

. 
(13) 

 

 From Equations (3) and (13), the approximated control effort at the current 

controller update can be defined as: 

 

�̂� =
1

𝛼
(−�̂� + 𝑦𝑑

(𝑚)
− ∑ (

𝑚 − 𝑛 − 1

𝑘
) 𝑒(𝑚−𝑘)𝜆𝑘

𝑚−𝑛−1

𝑘=1

).  
(14) 

 

Here, �̂� represents the controller’s approximation of the system dynamics using the control 

effort at the previous time step using numerical integration as is done in Model-Free 

Control. Note that 𝑦(𝑚) does not need to be measured. Since this is only an approximation, 

the equivalent control (the control signal that ensures �̇� = 0) is said to be 

 

𝑢 = �̂� − (𝑘/𝛼) ∙ sgn(𝑠)  (15) 

 

where sgn(𝑠) is a discontinuous signum function such that 

 

sgn(𝑠) = {
+1     𝑖𝑓 𝑠 > 0

−1     𝑖𝑓 𝑠 < 0
 , 

(16) 

 



and 

 

𝑘 = |𝐹 − �̂�| + 𝜂  (17) 

 

is chosen to satisfy Equation (12).  The addition of the discontinuous term forces the output 

trajectory of the system closer to the desired given its current position relative to the sliding 

surface. While |𝐹 − �̂�| is unknown, it is assumed to be bounded for well-behaved systems. 

Thus, choosing 𝑘 sufficiently large will satisfy the sliding condition. 

 Traditional Sliding Mode Control focuses on driving state trajectories onto a 

desired path.  Here, this technique was translated to the output-feedback problem to create 

a modern data-driven control strategy: Data-driven Sliding Control. For the purposes of 

this paper, 𝑚 = 1 and  𝑛 = −1 were chosen, which leads to the control law shown in 

Equation (18): 

 

𝑢 =
1

𝛼
(−�̂� + �̇�𝑑 − 𝜆𝑒) −

𝑘

𝛼
∙ sgn(𝑠).  

(18) 

 

A graphical representation of the implemented control scheme is shown in Figure 1. These 

parameters are chosen such that the derivative of the output, 𝑦, need not be measured as 

this is often difficult to do and laden with noise. The laser system depicted here can be 

replaced with most well-behaved systems and the controller will still work for a reasonable 

reference input because it does not require a model of the system in which it controls. 

 

 

Figure 1: Data-driven Sliding Control Scheme when 𝑚 = 1, 𝑛 = −1. 

NUMERICAL SIMULATION 

The proposed Data-driven Sliding Controller was tested against a general model 

for FRET, Equation (1), in numerical simulation. While recent research has validated the 

FRET model [13], the controller described in this paper is inherently data-driven and 

model-free. Thus, uncertainties in this model do not affect the accuracy or validation of 

this controller. This is because the Data-driven Sliding Controller creates its own 

instantaneous model of the system at each controller update. The goal of the STED 

microscope is to limit the diffraction of light in the image plane to better resolve its subject. 

Thus, precisely controlled fluorescence emitted by the probes used in STED imaging is 

critical. 



For simulation, the use of common, commercially available probes was assumed.  

Particularly, the FRET pair Cy3-Cy5, which have lifetimes of 0.3ns and 1ns, respectively.  

This gives the fluorescence rates 𝑘𝑑 = 1/0.3 ns−1 and 𝑘𝑎 = 1 ns−1.  The FRET rate is 

directly related to the fluorescence rate of the donor and the efficiency of FRET: 𝑘𝐹 =
𝑘𝑑/(1/𝐸 − 1) where E represents the FRET efficiency.  A moderate efficiency of 85% 

was assumed.  The excitation laser was held at a constant power, which produced 𝑘𝑒𝑥𝑐 =
20 𝑛𝑠−1, and the STED laser pump power was automatically adjusted by the controller to 

vary 𝑘𝑆𝑇𝐸𝐷. Moreover, the controller implemented in this simulation added a time varying 

“boundary layer” to the sliding surface to eliminate possible control “chattering” as done 

in [15].  This boundary layer eliminates excessive control activity when close to the sliding 

surface. The controller with boundary layer will track within a known precision—i.e. the 

width of the boundary layer.  The low tracking error of the implemented controller verifies 

its precision. 

Figure 2 (a) shows precisely controlled pulses of fluorescence from the acceptor 

probe achieved via automatic adjustment of the STED laser beam pump power by the Data-

driven Sliding Controller.  Figure 2 (b) shows the controlled STED rate achieved via 

automatic adjustment of the STED laser beam pump power. The controller demonstrated 

robust control with average error of 0.14% and peak error of 0.24%. This was achieved 

with control parameters: 𝛼 = −1, 𝜆 = 25000, 𝑘 = 1. Since Equation (2) is made of 

population probabilities, normalized fluorescence is represented. 

 

 

Figure 2: (a) Controlled pulses of acceptor fluorescence produced by the Data-driven Sliding Controller achieved via 

control parameters 𝛼 = −1, 𝜆 = 25000, 𝑎𝑛𝑑 𝑘 = 1. (b) STED rate produced by the controller via automatic adjustment 

of the STED laser pump power. 

 

Next, the effect of varying control parameters was explored. If the slope of the 

sliding surface is decreased to 𝜆 = 2500, high tracking performance is still achieved with 

an average error of 1.39% and peak error of 2.31%.  Finally, reducing the slope another 

order of magnitude to 𝜆 = 250 produces an average error of 11.4% and peak error of 

18.6%.  Thus, increasing the slope increases the rate of convergence of the system output 

to the reference trajectory. This is shown in Figure 3. Then, to demonstrate the power of 

the data-driven controller, FRET parameters from the first simulation were changed 

arbitrarily to (1)  𝑘𝑒𝑥𝑐 = 10 ns−1, 𝐸 = 0.9 and (2) 𝑘𝑒𝑥𝑐 = 7 𝑛𝑠−1, 𝐸 = 0.95, and 𝑘𝑑 =
1/0.5 𝑛𝑠−1. All other FRET and control parameters were held constant. The output of the 

system still tracks the desired trajectory despite completely different system dynamics in 

both scenarios (1) and (2) without any controller adjustment.  This is shown in Figure 4. 

In most experimental set ups, the measurable error of the system can be inherently noisy. 

To verify controller performance in this scenario, simulations were conducted with 



Gaussian noise injected into the error signal. A single pulse is used in order to better 

observe the effects of the noise on the output signal. The results are shown in Figure 5 for 

varying levels of noise. A reasonable tracking performance is obtained for noise level 

below 5.8%. 

 

 

Figure 3:  Degrading control with varying control parameters. Controller 1 corresponds to 𝜆 = 25000, controller 2 

corresponds to 𝜆 = 2500, and controller 3 corresponds to 𝜆 = 250. 

 

 

Figure 4:  Controlled pulses of acceptor fluorescence after changing system dynamics. (a) Scenario 1: 𝑘𝑒𝑥𝑐 = 10 ns−1 and 

𝐸 = 0.9. (b) Scenario 2: 𝑘𝑒𝑥𝑐 = 7 𝑛𝑠−1, 𝐸 = 0.95, and 𝑘𝑑 = 1/0.5 𝑛𝑠−1. 

CONCLUSIONS 

A data-driven control method, Data-driven Sliding Control, was presented as a 

method for controlling the fluorescence from conjugate donor-acceptor probes in STED 

microscopy. The controller showed negligible tracking error in the presence of varying 

system dynamics and in the presence of Gaussian noise in its error signal without requiring 

control parameter adjustments. Since the geometry of its point spread function is 

established by the engineering of the microscope, its resolution is directly proportional to 



the light emitted from the focal plane. By demonstrating how to precisely control the 

visible fluorescence emitted from probes in the focal plane of the microscope, this paper 

offers an optimization technique to increase the resolution of the STED microscope. In this 

paper, the microscope’s excitation beam’s pump power was held constant while the 

depletion laser beam was varied automatically by the controller. In the future, the authors 

plan to develop ways to automatically control both laser beams simultaneously, which 

would allow for the optimization of microscopes with dual-pulsed lasers and multiple 

probes’ fluorescence. 

Figure 5: (a) Controlled pulses of fluorescence while gaussian noise was injected into the error signal of the controller. (b) 

The noise injected into the error signal over the course of the simulation measured in percent error.  Percent error is 

calculated as the noise divided by the reference signal. 
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